
Scheduling Independent Moldable Tasks
on Multi-Cores with GPUs

Rapha€el Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna,

Gr�egory Mouni�e, and Denis Trystram

Abstract—We present a new approach for scheduling independent tasks on multiple CPUs and multiple GPUs. The tasks are

assumed to be parallelizable on CPUs using the moldable model: the final number of cores allotted to a task can be decided and set by

the scheduler. More precisely, we design an algorithm aiming at minimizing the makespan—the maximum completion time of all

tasks—for this scheduling problem. The proposed algorithm combines a dual approximation scheme with a fast integer linear program

(ILP). It determines both the partitioning of the tasks, i.e., whether a task should be mapped to CPUs or a GPU, and the number of

CPUs allotted to a moldable task if mapped to the CPUs. A worst-case analysis shows that the algorithm has an approximation ratio of
3
2 þ �. Since the time complexity of the ILP-based algorithm could be non-polynomial, we also present a polynomial-time algorithm with

an approximation ratio of 2þ �. We complement the theoretical analysis of our two novel algorithms with a simulation study. In these

simulations, we compare our algorithms to a modified version of the classical HEFT algorithm, which we adapted to handle moldable

tasks. The simulation results show that our algorithm with the 3
2 þ �
� �

-approximation ratio produces significantly shorter schedules than

the modified HEFT for most of the instances. In addition, our results provide evidence that our ILP-based algorithm can solve larger

problem instances in a reasonable amount of time.

Index Terms—Scheduling, heterogeneous computing, moldable tasks, dual approximation scheme, integer linear programming

Ç

1 INTRODUCTION

TODAY’S available parallel computing systems often con-
sist of compute nodes that contain multi-core CPUs and

additional hardware accelerators [1]. Such accelerators
(General Purpose Graphic Processor Units, denoted by
GPUs for short) have a simpler architecture than traditional
CPUs. They offer a high degree of parallelism, as they pos-
sess a large number of compute cores, but only provide a
limited amount of memory. These hybrid systems are
becoming more popular, and it is foreseeable that the trend
of using such hybrid systems will grow, especially since
GPUs consume significantly less power per flop than stan-
dard CPUs [2].

Recent works have addressed the issue of efficiently uti-
lizing such hybrid platforms, e.g., to improve the perfor-
mance of numerical kernels [3], [4]; biological sequence
alignments [5]; or molecular dynamics codes [6]. The sched-
uling algorithms employed in these works were tailor-made
for the targeted applications. Therefore, these scheduling

algorithms lack a high-level view of all tasks, to provide an
efficient and transparent solution for any type of parallel
application. The challenge is to develop an effective and
automatic resource manager for executing generic applica-
tions on parallel and hybrid platforms.

We have already done first steps to devise such a generic
scheduling algorithm for heterogeneous compute nodes. In
particular, we have developed an approximation algorithm
with a constant worst-case performance guarantee, which
provides solutions for the problem of scheduling indepen-
dent, sequential tasks on CPUs or GPUs with the makespan
objective [7], [8]. However, the algorithm has two main
drawbacks. First, although the proposed algorithm has a
polynomial-time complexity, it relies on dynamic program-
ming, in which a vast state space has to be explored. For
that reason, the practical applicability of the algorithm is
limited due to its large run-time. Second, tasks can poten-
tially benefit from internal (data-)parallelism on CPUs,
while our previous algorithm works for sequential tasks
only. Thus, in the present work we assume that tasks are
moldable, i.e., they are computational units that may be exe-
cuted by several (more than one) processors. The run-time
of a moldable task depends on the number of processors
allotted to it. This model allows exploiting the two types of
parallelism offered by hybrid parallel computing platforms:
the inherent parallelism induced by the GPU architecture,
and the parallelization of tasks on several CPUs. The goal of
this work is to propose a generic method to leverage these
two different kinds of parallelism.

Compared to the state of the art, we make the following
contributions in the present article:

� R. Bleuse, G. Mouni�e, and D. Trystram are with Univ. Grenoble Alpes,
CNRS, Inria, Grenoble INP, LIG, Grenoble 38000, France.
E-mail: {raphael.bleuse, gregory.mounie, denis.trystram}@imag.fr.

� S. Kedad-Sidhoum and F. Monna are with Sorbonne Universit�es, UPMC
University Paris 06, UMR 7606, LIP6, Paris 75005, France.
E-mail: safia.kedad-sidhoum@lip6.fr, florence.monna@gmail.com.

� S. Hunold is with TU Wien, Faculty of Informatics, Institute of Informa-
tion Systems, Favoritenstraße 16/184-5, Vienna 1040, Austria.
E-mail: hunold@par.tuwien.ac.at.

Manuscript received 2 Nov. 2015; revised 20 July 2016; accepted 26 July 2016.
Date of publication 1 Mar. 2017; date of current version 9 Aug. 2017.
Recommended for acceptance by A. Benoit.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2675891

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017 2689

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

� We present a novel algorithm—combining dual
approximation and integer linear programming—
that can solve the scheduling problem of indepen-
dent, moldable tasks on hybrid parallel compute
platforms consisting ofm CPUs and k GPUs.

� We prove that the proposed algorithm has an
approximation ratio of at most 32 þ �.

� We show through a sequence of simulations that
although our algorithm is based on integer linear pro-
gramming—with a theoreticalworst-case exponential-
time complexity—it is still practically relevant, as it
provides competitive schedules, and has a relatively
short run-time.

� In addition, we present a fully polynomial-time algo-
rithm for the same scheduling problem. We prove
that this algorithm has an approximation ratio of at
most 2þ �.

The �-term in the approximation ratios comes from the
binary search of the dual approximation and the integer linear
program solver’s accuracy. One can remove the �-term from
the ratios under the assumptions that every task has an inte-
ger processing time and that solvers use rational numbers.

The paper is organized as follows: in Section 2, we define
the scheduling problem targeted in this work. We examine
related work on scheduling with GPUs and moldable tasks
in Section 3. We present a novel scheduling algorithm,
which is based on integer linear programming (ILP), in
Section 4, and provide its theoretical analysis in Section 5. In
Section 6, we devise a fully polynomial approximation algo-
rithm, which is introduced to compare results with sched-
ules obtained from our ILP-based algorithm. In Section 7,
we assess the solution quality (makespan) of various sched-
uling algorithms for a variety of test instances through sim-
ulation. We conclude the paper in Section 8.

2 PROBLEM DEFINITION

We consider a parallel multi-core platform composed of
m identical CPUs and k identical GPUs. An instance of the
problem is described as a set T1; . . . ; Tnf g of n independent
tasks, considered to be moldable when assigned to the CPUs
and to be sequential when assigned to a GPU. The process-
ing time of any task Tj is represented by a function

pj : l 7! pj;l, determining the processing time when executed

on l CPUs, and by pj denoting the processing time when

executed on a GPU. We assume that these processing times
are known in advance.

The scheduling problem consists in finding a function s that
associates for each task Tj its starting time and the computing
resources assigned for its execution. A task is either assigned
to a single GPU or to a subset of the available CPUs, under
the constraints that a task starts its execution simultaneously
on all the allocated resources and occupies them without
interruption until its completion time (i.e., no preemption).

We define the CPU work function wj of a task Tj as
wj : l7!wj;l ¼ l� pj;l for l4m. It corresponds to the computa-
tional area of Tj on the CPUs in the Gantt chart representa-
tion of a schedule. We assume that the assignment of CPUs
to tasks has a monotonic behavior: assigning more CPUs to
a task decreases its processing time, but comes at the cost
of an increased work. The increased work represents the

parallelization cost (internal communications and synchro-
nizations). Such a hypothesis is equivalent to the Brent’s
lemma [9], which states that the parallel execution of a task
achieves some speedup if it is large enough, but does not
lead to super-linear speedups. One can identify two types
of monotonies: a task is time monotonic when pj is a non-
increasing function, and a task is work monotonic when wj is
a non-decreasing function. A task is said to be monotonic if it
is both time monotonic and work monotonic. Throughout
this work, we assume that all the tasks of the considered
instance are monotonic. There is no need of such a hypothe-
sis on the GPUs as the tasks are considered sequential on
this architecture.

The makespan is defined as the maximum completion
time of all tasks. For the problem considered here, the objec-
tive is to minimize the makespan of the whole schedule,
which is the maximum of the makespan on the CPUs and
the makespan on the GPUs. The problem is denoted by
ðPm;PkÞ jmold jCmax.

Notice that if all the tasks are sequential and the process-
ing times are the same on both devices (pj ¼ pj;1) for
j ¼ 1; . . . ; n, the problem ðPm;PkÞ jmold jCmax is equivalent
to the classical PkCmax problem, which is NP-hard. Thus,
the problem of scheduling moldable tasks with GPUs is also
NP-hard, and we are looking for efficient algorithms with a
guaranteed approximation ratio. Recall that for a given

problem, the approximation ratio rA of an algorithm A is

defined as the supremum of the ratio fðIÞ
f�ðIÞ over all the instan-

ces I, where f is any minimization objective and f� is its
optimal value.

3 RELATED WORK

From a scheduling perspective, ðPm;PkÞkCmax is more gen-
eral than PkCmax, and it is a special case of RkCmax. Lenstra
et al. [10] proposed a PTAS for the problem RkCmax with
running time bounded by the product of ðnþ 1Þm=� and a
polynomial of the input size. If the parameter m is not fixed
then the algorithm is not fully polynomial. The authors also
proved that, unless P ¼ NP , there is no polynomial-time
approximation algorithm for RkCmax with an approximation
factor of less than 3

2, and they presented a two-approximation
algorithm. This algorithm is based on rounding the optimal
solution of the preemptive version of the problem. Shmoys
and Tardos [11] generalized the rounding technique for any
fractional solution. Another rounding technique,which yields
an improved approximation factor of 2� 1

m, was introduced
by Shchepin andVakhania [12]. This is, so far, the best-known
approximation result for RkCmax. If we look at the more spe-
cific problem of scheduling unrelated machines of few differ-
ent types, Bonifaci and Wiese [13] presented a PTAS to solve
it. However, the precise time complexity of this polynomial-
time algorithm is not provided, and we expect the algorithm
might be less relevant in practice.

Finally, it is worth noticing that if all tasks of the
addressed problem have the same acceleration on GPUs,
the problem reduces to a QkCmax problem with two
machine speeds.

A family of scheduling algorithms based on the dual
approximation scheme for the problem ðPm;PkÞkCmax with

2690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

sequential tasks has been developed in a previous paper [7].

These algorithms provide a 1þ �þOð1qÞ approximation for

any � > 0 and a running time of Oðn2kqmqÞ.
The problem of scheduling independent moldable tasks

on homogeneous parallel systems has been extensively stud-
ied in the last decade. Some complex numerical simulations
can benefit from the moldable model to leverage different
levels of parallelism in an efficient way [14]. The interest in
studying this problem was motivated by scheduling jobs in
batch processing inHPC clusters. For instance, the documen-
tation of TORQUE mentions a basic moldable submission
mechanism. A noteworthy work is the implementation and
evaluation of amoldable scheduler by Eyraud [15].

Jansen and Porkolab [16] proposed a polynomial-time
approximation scheme based on a linear programming for-
mulation for scheduling independent moldable tasks. The
complexity of their scheme, although linear in the number
of tasks, is exponential in the number of processors. Thus,
although the result is of significant theoretical interest, this
algorithm has little practical applicability.

Many previous works are based on a two-phase
approach, initially proposed by Turek, Wolf, and Yu [17].
The basic idea is to first select an assignment (the number of
processors assigned to each task), and then to solve the
resulting rigid (non-moldable) scheduling problem, which
is a classical scheduling problem with multiprocessor tasks.
As far as the makespan objective is concerned, this problem
is related to a 2-dimensional strip-packing problem for inde-
pendent tasks [18], [19].

It is clear that applying a r-approximation algorithm on
the rigid problem also yields a r-approximation for the
moldable problem, if an optimal assignment of processors
to tasks can be found. Two complementary ways for solving
the problem have been proposed, either by focusing on the
assignment (first phase) or on the scheduling (second
phase). Ludwig [20] improved the complexity of the
assignment selection in the special case of monotonic
tasks, leading to a two-approximation algorithm. The
other way corresponds to choosing an assignment such
that the resulting non-moldable problem is not a general
instance of strip-packing: hence, better specific approxi-
mation algorithms can be applied. Using the knapsack
problem as an auxiliary problem for the selection of the
assignment, Mouni�e et al. [21] designed a ð32 þ �Þ-approx-
imation algorithm for any positive �. This algorithm
relies on a structure that only targets PkCmax, and the
assignment selection process does not scale for ðPm;
PkÞkCmax. In the present work, we adapt the structure of
the algorithm to deal with the heterogeneous case by
designing a completely new and direct assignment selec-
tion algorithm. Furthermore, Fan et al. [22] carried out—
from a theoretical and experimental point of view—an
extensive comparison of low-cost scheduling algorithms
for moldable tasks.

Scheduling algorithms for moldable, parallel tasks with
precedence constraints have also been the focus of previous
works, where many approximation algorithms were devel-
oped under certain assumptions on the speedup or run-
time behavior of moldable tasks. A common assumption—
also used in the present paper—is that a moldable task’s
run-time is monotonically decreasing in the number of

processors. However, Hunold [23] demonstrated that in
practical situations several parallel applications may violate
this assumption, i.e., assigning more processors will effec-
tively increase the run-time. Nevertheless, our proposed
algorithm can be used in practice: it requires that the run-
time and work functions of real-world applications have to
be adapted in order to fulfill the monotony assumption.

4 ALGORITHM APPROX-3/2

The principle of the algorithm is based on a dual approxi-
mation scheme [24]. Recall that a r-dual approximation
algorithm for a minimization problem takes a real number �
(called the guess) as an input, and either delivers an approx-
imate solution with objective function value at most r�, or
answers correctly that no solution with objective function
value at most � exists.

Our goal is to optimize the makespan, and we target an
approximation ratio of r ¼ 3

2. Let � be the current real num-
ber input for the dual approximation. In the whole section,
we suppose there exists a schedule of length at most �, and
we show how to build a schedule of length at most 3�

2 . The
dual approximation technique helps to drastically reduce
the complexity of the algorithm. Knowing an estimate of the
optimal makespan allows for reducing the search space by
looking for schedules with a given structure (see Section 4.1),
and allows for an efficient sweep of the candidate solutions
(see Section 4.2.2).

Given a positive number h, we define for each task Tj its
canonical number of CPUs gðj; hÞ [21]. It is the minimal num-
ber of CPUs needed to execute task Tj in time at most h. If
Tj cannot be executed in time at most h on m CPUs, we set
by convention gðj; hÞ ¼ þ1. Observe that wj;gðj;hÞ is the
minimal work area needed to execute Tj on CPUs in time at
most h. Also note that if the set of tasks is monotonic, the
canonical number of CPUs can be found in time OðlogmÞ
by binary search.

4.1 Partitioning Tasks

The idea of the algorithm is to partition the set of tasks into
seven sets, five for the CPUs and two for the GPUs, as
depicted in Fig. 1. This choice of the task assignment to
CPUs is detailed below:

(0) The set contains the sequential tasks that are
assigned to CPUs with a processing time at most �2.

(1) The set contains the sequential tasks that are
assigned to CPUs with a processing time strictly
greater than �

2 and at most 3�
4 . The tasks of this set are

partitioned and assigned to one of two shelves as
depicted in Fig. 1, namely, the left set ð1ÞL and the
right set ð1ÞR.

(2) The set contains either sequential or parallel tasks
that possess a canonical number of CPUs for time 3�

2 ,
but the processing time of these tasks with this
canonical number of CPUs must be strictly greater
than �. As this set targets CPUs, all tasks of this set
are assigned to gðj; 3�2 Þ CPUs.

(3) The set contains the tasks that are assigned to their
canonical number of CPUs for time �. If this number
is 1, then the processing time of the corresponding
task is strictly greater than 3�

4 and at most �. If a task of

BLEUSE ET AL.: SCHEDULING INDEPENDENT MOLDABLE TASKS ON MULTI-CORES WITH GPUS 2691

this set is assigned more than one processor, its proc-
essing time is strictly greater than �

2 and atmost �.
(4) The set contains the parallel tasks that are assigned

to their canonical number of CPUs for time �
2. Note

that gðj; �2Þ is greater than 1.
Similarly, the tasks assigned to GPUs are partitioned into

two sets:

(5) The set containing the tasks that are assigned to a
GPU with a processing time strictly greater than �

2
and at most �.

(6) The set containing the tasks that are assigned to a
GPU with a processing time at most �

2.
Such a partitioning ensures that the makespan on the

CPUs and on the GPUs is at most 3�2 .
Note that if there is an even number of tasks assigned to

set ð1Þ, both sets ð1ÞL and ð1ÞR occupy the same number of
CPUs. On the contrary, if set ð1Þ contains an odd number of
tasks, the right set occupies one less processor (as shown in
Fig. 2).

4.2 Mathematical Formulation

Partitioning tasks into the seven above-mentioned sets using
a greedy list scheduling algorithm does not achieve the
desired performance guarantee. Therefore, we propose an
Integer Linear Program for solving the assignment problem.

4.2.1 Objective Function and Constraints

We define WC as the computational area of the CPUs on the
Gantt chart representation of a schedule, i.e., the sum of all
the work of the tasks assigned to CPUs

WC ¼
X

Tj2ð0Þ[ð1Þ
wj;1 þ

X
Tj2ð2Þ

wj;gðj;3�2 Þ
þ

X
Tj2ð3Þ

wj;gðj;�Þ þ
X
Tj2ð4Þ

wj;gðj;�2Þ
:

(1)

We want to obtain a specific five-set schedule on the
CPUs and a two-set schedule on the GPUs. Hence, we look
for an assignment that minimizes the total computational
areaWC on the CPUs.

The assignment must satisfy the following constraints:

(C1) The total computational area on the CPUs is at mostm�.
(C2) Sets ð1ÞL, ð2Þ, and ð3Þ use a total of at mostm processors.
(C3) Sets ð1ÞR, ð2Þ, and ð4Þ use a total of at mostm processors.
(C4) The total computational area on the GPUs is at most k�.
(C5) Set ð5Þ uses a total of at most k processors.
(C6) Each task is assigned to exactly one set.
(C7) The number of tasks assigned to set ð1Þ is the total num-

ber of tasks processed in its two shelves.
(C8) The tasks of set ð1Þ are evenly shared between its two

sets ð1ÞL and ð1ÞR, i.e., there is at most one task less in
ð1ÞR. The idle time induced by the difference is used to
process a fraction of a task assigned to set ð4Þ.

Such an assignment defines a schedule of length at

most 3�
2 , which allows us to construct the desired solution.

Notice that there are no constraints for sets ð0Þ and ð6Þ.
We show in Section 5.2 (see Lemmas 5 and 6) that this set
of constraints is sufficient to ensure that we can build a
feasible solution.

4.2.2 Filtering

Due the structure of the schedule, tasks belong only to a lim-
ited number of shelves. Hence, we define for each task Tj

the filtering function F ðjÞ computing the set of possible con-
taining shelves. For each set ðiÞ we also define the set of
tasks T ðiÞ that are eligible for an allocation in ðiÞ. The eligible
allocation sets are explicitly defined as follows:

T ð0Þ ¼ j j pj;1 �
�

2

� �
;

T ð1Þ ¼ j j �

2
< pj;1 �

3�

4

� �
;

T ð2Þ ¼ j j � < pj;gðj;3�2 Þ
� 3�

2

� �
;

T ð3Þ ¼ j j �

2
< pj;gðj;�Þ � �

� �
n T ð1Þ;

T ð4Þ ¼ j j pj;gðj;�2Þ �
�

2
^ g j;

�

2

� �
> 1

� �
;

T ð5Þ ¼ j j �

2
< pj � �

� �
;

T ð6Þ ¼ j j pj �
�

2

� �
:

Fig. 2. Structure of the schedule on CPUs with an odd number of tasks
in set ð1Þ.

Fig. 1. Structure of the schedule. The number of processors used by set ðiÞ
is denoted bymðiÞ. The number of CPUs below set ð3Þ is denoted bym;.

2692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

We furthermore define for each task Tj several binary
variables x

ðiÞ
j , where i 2 F ðjÞ. If Tj is assigned to set ðiÞ, we

define x
ðiÞ
j to be 1. Otherwise we set x

ðiÞ
j to be 0. We also

define for set ð1Þ the variable leftð1Þ (resp. rightð1Þ), that cor-
responds to the number of tasks assigned to the ð1ÞL (resp.
ð1ÞR) shelf of set ð1Þ (see Fig. 1).

This filtering step helps to reduce the search space. The
intersection graph of the eligible allocation sets, shown in
Fig. 3, explains this behavior. Each task can simultaneously
belong to only a limited number of sets, since most sets are
mutually exclusive. In most cases, a task belongs to 2 or 3
sets. For example, let us consider a task Tj with a sequential
processing time of at most �

2 on a CPU. Depending on its
processing time on a GPU, the set of possible shelves for Tj

is either F ðjÞ ¼ f0; 5g or F ðjÞ ¼ f0; 6g.

4.2.3 Integer Linear Program

Determining if such an assignment exists, reduces to solv-
ing an ILP that can be formulated as follows:

min W
ðILP Þ
C ¼

X
j2T ð0Þ

wj;1x
ð0Þ
j þ

X
j2T ð1Þ

wj;1x
ð1Þ
j

þ
X
j2T ð2Þ

wj;gðj;3�2 Þ
x
ð2Þ
j þ

X
j2T ð3Þ

wj;gðj;�Þx
ð3Þ
j

þ
X
j2T ð4Þ

wj;gðj;�2Þ
x
ð4Þ
j ;

s.t. W
ðILP Þ
C 4m�; ðC1Þ

X
j2T ð2Þ

g j;
3�

2

� �
x
ð2Þ
j þ

X
j2T ð3Þ

gðj; �Þxð3Þ
j þ leftð1Þ4m; ðC2Þ

X
j2T ð4Þ

g j;
�

2

� �
x
ð4Þ
j þ

X
j2T ð2Þ

g j;
3�

2

� �
x
ð2Þ
j þ rightð1Þ4m; ðC3Þ

X
j2T ð5Þ

pjx
ð5Þ
j þ

X
j2T ð6Þ

pjx
ð6Þ
j 4k�; ðC4Þ

X
j2T ð5Þ

x
ð5Þ
j 4k; ðC5Þ

X
i2F ðjÞ

x
ðiÞ
j ¼ 1 8j 2 f1; . . . ; ng; ðC6Þ

X
j2T ð1Þ

x
ð1Þ
j ¼ leftð1Þ þ rightð1Þ; ðC7Þ

04leftð1Þ � rightð1Þ41; ðC8Þ

x
ðiÞ
j 2 0; 1f g 8j 2 f1; . . . ; ng; 8i 2 F ðjÞ; ðC9Þ

leftð1Þ; rightð1Þ 2 f0; . . . ;mg: ðC10Þ

The first eight constraints of this integer linear program
correspond to the constraints defined in Section 4.2.1, which
allow us to obtain a five-set schedule on the CPUs and a
two-set schedule on the GPUs. The last two constraints (C9)
and (C10) are integrity constraints for the variables of the
integer linear program.

5 ANALYSIS OF APPROX-3/2

The integer linear program presented above derives from
the structural properties of the schedule that we aim to con-
struct. The analysis is structured in three steps. First, we
explain how the estimation of the instance’s makespan �
helps us to sort and allocate tasks. Second, we give some
insight on the structure of the proposed partitioning.
Finally, we prove the correctness of the dual approximation,
i.e., we prove that the reject condition is actually matched by
the algorithm.

5.1 Structure of a Schedule with Makespan �

Assuming that there exists a schedule with length at most �
allows us to efficiently leverage the dual approximation par-
adigm. We state some straightforward properties of such a
schedule, which should give insight for constructing a feasi-
ble solution.

Proposition 1. In a solution with makespan at most �, the proc-
essing time of each task is at most �. The computational area on
the CPUs (resp. GPUs) is at mostm� (resp. k�).

Notice that for the problem of scheduling moldable tasks
on identical processors [21], it is enough to look at the 2m
tasks with the longest processing times. If they have a
computational area larger than m�, then a schedule of
length � cannot exist. In the case of heterogeneous process-
ors, some of these tasks can be assigned to a GPU, therefore
all n tasks have to be considered in our case.

Proposition 2. If, in a solution with makespan at most �, two
consecutive tasks on the same processor exist, such that one of
the tasks has a processing time greater than �

2, then the other
task has a processing time lower than �

2.

Proposition 3. Two tasks with sequential processing times on a
CPU greater than �

2 and at most 3�
4 can be executed successively

on the same CPU in time at most 3�
2 .

We now look at exploiting the properties of a schedule
with makespan at most �, in order to construct the seven
sets. The constraints of the integer linear program derive
from these properties.

As we aim at a makespan of 3�
2 , we know from Proposi-

tion 3 that two tasks from set ð1Þ can be executed succes-
sively on the same CPU. The whole set occupies mð1Þ CPUs.

The number of tasks in set ð1ÞR is given by mð1Þ � 1ð1Þodd
where 1ð1Þodd is an indicator function, which is equal to 1 if

the number of tasks in set ð1Þ is odd.
From Proposition 2 we know that the remaining tasks

(i.e., not belonging to set ð1Þ) with CPU processing times

Fig. 3. Intersection graph of the eligible allocation sets in its most generic
shape. Actual instances usually have fewer edges.

BLEUSE ET AL.: SCHEDULING INDEPENDENT MOLDABLE TASKS ON MULTI-CORES WITH GPUS 2693

greater than �
2 do not use more than the remaining CPUs,

that is m� mð1Þ CPUs. Hence, these tasks can be executed
concurrently on the CPUs in set ð3Þ, and they occupy
mð3Þ CPUs.

Set ð2Þ does not exist in a solution withmakespan �, as the
processing times of all tasks in set ð2Þ are greater than �with
the number of CPUs they are assigned to. However, with
this assignment and the monotony of the tasks on CPUs, the
work of tasks in set ð2Þ is lower than their corresponding
work in the optimal schedule. Therefore, every task assigned
to set ð2Þ in the constructed schedule is a gain on the total
work on the CPUs. The tasks of set ð2Þ occupy mð2Þ CPUs,
and the inequalitymð1Þ þ mð2Þ þ mð3Þ4mmust be satisfied.

The remaining tasks on the CPUs have processing
times at most �

2, and those that are not sequential can be
executed in time at most �

2 in set ð4Þ. These tasks cannot
be executed on the CPUs occupied by tasks from set ð2Þ,
but can be processed after the tasks from set ð3Þ. They
cannot be on the CPUs that already process two tasks of
ð1Þ, but if the number of tasks in set ð1Þ is odd, there is a
CPU that only processes one task from set ð1ÞL and a
task from set ð4Þ can be executed on this CPU. Therefore,
if we denote by mð4Þ the number of CPUs occupied by
tasks of set ð4Þ, the inequality mð1Þ � 1ð1Þodd þ mð2Þ þ
mð4Þ4m must be satisfied.

The remaining sequential tasks on CPUs have processing
times at most �

2, and are assigned to set ð0Þ.
With the same reasoning, the tasks on GPUs with proc-

essing time greater than �
2 do not use more than k GPUs,

and hence can be executed concurrently in set ð5Þ.
The remaining tasks on the GPUs have processing times

at most �
2, and can be executed in time at most �

2 in set ð6Þ on
the GPUs. A task from set ð6Þ can be scheduled after a task
from set ð5Þ or on the remaining free GPUs.

5.2 Structure of the Partitioning

We now prove that, under the assumption that the dual

approximation does not reject the current guess �, i.e.,

W
ðILP Þ
C 4m�, the ILP solution leads to a feasible seven-set

schedule.

The structure of the partitioning verifies some properties
exposed hereinafter.

Lemma 4. With the assumption that W
ðILP Þ
C 4m�, the tasks

assigned to sets ð1Þ, ð2Þ, ð3Þ, and ð4Þ occupy at most m CPUs,
for time at most 3�

2 .

Proof. From Constraints (C2) and (C3), the assignment of
the tasks in the four sets is such that they occupy at most
m CPUs. The tasks from set ð1Þ are scheduled two by two.
According to Constraint (C8), set ð1Þ may have an even
(see Fig. 1) or an odd (see Fig. 2) number of tasks. When-
ever set ð1Þ contains an odd number of tasks, an extra pro-
cessor is available to compute tasks from set ð4Þ. The tasks
of set ð4Þ are scheduled after tasks of set ð3Þ or on remain-
ing free CPUs. With this schedule, at most m CPUs are
occupied and the makespan is at most 3�2 . tu

Lemma 5. If W ðILP Þ
C 4m�, the tasks assigned to set ð0Þ fit in the

remaining free computational space, while keeping a makespan
of at most 3�

2 .

Proof. By construction, all tasks of set ð0Þ have a sequential
processing time on a CPU lower than �

2, and they neces-
sarily fit into the remaining computational space in the
allowed area of 3�

2 m (represented by the dashed area in
the Figs. 1 and 2). The schedule would otherwise contra-
dict Proposition 1.

The following algorithm can be used to schedule
these tasks:

1) Consider the remaining tasks T1; . . . ; Tf , ordered
by decreasing sequential processing time on the
CPU, where f is the number of remaining tasks.

2) At each step s (s ¼ 1; . . . ; f) assign task Ts to the
least loaded CPU, at the latest possible date, or
between set ð3Þ and set ð4Þ if relevant. Therefore,
tasks are stacked in reverse, starting from the
upper bound 3�

2 . Applying this strategy allows us
to derive the same structure as shown in Fig. 1.
Then, we update the CPU’s load accordingly.

At each step, the least loaded CPU has a load of at
most �: it would otherwise contradict the fact that the
total work area of the tasks is bounded bym�, because of
Constraint (C1). Hence, the idle time interval on the least
loaded CPU has a length at least equal to �

2, and it can be
used to execute task Ts. This completes the proof of
Lemma 5. tu

Lemma 6. If W ðILP Þ
C 4m�, the tasks assigned to sets ð5Þ and ð6Þ

occupy at most k GPUs, for time at most 3�
2 .

Proof. When the tasks of set ð5Þ are assigned to the GPUs,
they take up to k GPUs due to Constraint (C5), and their
processing time is at most �: the dual approximation
would otherwise reject the solution. The tasks of set ð5Þ
are scheduled first, one per GPU.

By construction, all tasks in set ð6Þ have a processing
time on a GPU at most �

2, and thus they necessarily fit
into the remaining computational space in the allowed
area of 3�

2 k. The schedule would otherwise contradict
Proposition 1 and Constraint (C4).

The following algorithm can be used to schedule these
tasks:

1) Consider the remaining tasks T1; . . . ; Tf ordered
by decreasing processing time on the GPU, where
f is the number of remaining tasks.

2) At each step s (i ¼ 1; . . . ; f) assign task Ts to the
least loaded GPU, at the latest possible date (same
strategy as before). Update the GPU’s load.

At each step, the least loaded GPU has a load of at
most �: it would otherwise contradict the fact that the
total work area of the tasks is bounded by k�, accord-
ing to Constraint (C4). Hence, the length of the idle
time interval on the least loaded GPU is at least equal
to �

2 and can contain the task Ts. This completes the
proof of Lemma 6. tu

Lemmas 4, 5, and 6 allow us to derive the following
theorem:

Theorem 7. If W
ðILP Þ
C 4m�, then there exists a schedule of

length at most 3�
2 built upon the assignment of the tasks given

by the solution of ILP.

2694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

Proof. The solution of ðILP Þ returns an assignment such
that the computational area on the CPUs is minimized.
Therefore, its value W

ðILP Þ
C is lower than the computa-

tional area on the CPUs in the optimal schedule, W �
C ,

which is lower than m�, since we assumed that there
exists a schedule with makespan at most �. The three lem-
mas show that the schedule constructed with the assign-
ment of the tasks given by the solution of ðILP Þ has a
makespan of at most 3�2 . tu

If no solution exists, for which the computational area on
the CPUs is at most m� (i.e., Constraint (C1) cannot be ful-
filled), the dual approximation algorithm rejects the current
guess �. Such a behavior is due to ðILP Þ, as it minimizes the
computational areaW

ðILP Þ
C . As the seven-set structure allows

solutions with makespan greater than the optimal, this
implies that W

ðILP Þ
C 4W �

C . Let us assume that a solution with
makespan of at most � exists, then we would get
m� < W

ðILPÞ
C 4W �

C4m�. This leads to a contradiction.
Hence, no solutionwith amakespan of atmost � exists in that
case, and rejecting the current guess � is the correct behavior.

For a given guess � of the dual approximation algorithm,
we have proved so far that if ðILP Þ is infeasible
(W

ðILP Þ
C > m�), then there is no solution with makespan �,

and the guess has to be rejected. If the solution of ðILP Þ has
a computational area on the CPUs of at most m�, then we
can construct a solution with makespan at most 3�

2 by using
the partitioning of the CPUs and GPUs sets.

5.3 Correctness of the Dual Approximation Scheme

It remains to be proved that the existence of a solution with
makespan at most � implies the existence of a solution with
the seven-shelf structure. To do so, we first state and prove
two technical lemmas before stating the existence theorem
(Theorem 10).

Lemma 8. Suppose that a solution sref with makespan at most �
exists. The assignment of tasks to the GPUs in sref is compati-
ble with the seven-shelf structure.

Proof. All tasks assigned to the GPUs by sref are sequential.
Hence, we can assign these tasks to two distinct sets: tasks
with a processing time strictly greater than �

2 and tasks
with a processing time lower than �

2. These two sets
exactly match the sets ð5Þ and ð6Þ of the structure we are
interested in. tu

Lemma 8 allows us to only consider tasks assigned to the
CPUs in the proof of the existence of the schedule we are
interested in.

Lemma 9. If a solution sref with makespan at most � exists, then
a solution sstruct with the seven-set structure exists, whose sub-
solution sstruct (considering only tasks assigned to CPUs) uses
at most m CPUs with a lower CPU load than the CPU load of
sref .

Proof. First, we prove that the big tasks of sref , namely tasks
with a processing time greater than �

2, fit in the sets ð1Þ,
ð2Þ, and ð3Þ, without using more than m CPUs and with-
out increasing the CPU load:

� The tasks assigned to set ð1Þ are sequential tasks
of length greater than �

2, and thus, their work is

minimal. Since their processing time is at most 3�
4 ,

only one of the tasks assigned to set ð1Þ can fit on
one CPU in sref , whereas in sstruct, these tasks are
stacked by pairs, one in shelf ð1ÞL, the other in
shelf ð1ÞR. As a result, the tasks in set ð1Þ in sstruct

use fewer processors than theywould in sref .
� The tasks assigned to sets ð2Þ and ð3Þ use their

canonical number of CPUs for a time limit of at
least �. Hence, they generate a lower or equal
work than they would in sref . As these tasks use
their canonical number of processors for a time
limit that is greater than �, they use fewer process-
ors than they would in sref . Observe that the tasks
assigned to set ð2Þ use fewer processors than they
do in sref due to the relaxed time limit.

We now consider the tasks of sref assigned to CPUs
with a processing time at most �

2. All the tasks with a
sequential time at most �

2 are assigned to set ð0Þ. The
remaining tasks are the tasks that have been assigned to
more than one CPU in sref , with a processing time at
most �

2. The monotony assumption ensures that they can
fit in any of the sets ð1Þ, ð2Þ, ð3Þ, and ð4Þ, without increas-
ing the computational load. In order to prove that such
an assignment of these remaining tasks exists, we con-
sider the integer linear program introduced in Section
4.2, but we relax it by removing Constraint (C3). This
allows set ð4Þ to occupy as many CPUs as needed. Due to
Lemma 8, tasks that have already be assigned to GPUs as
in sref have their corresponding variables in the integer
linear program set according to their assignment. We let
the integer linear program choose the remaining assign-
ments. By doing so, since Constraint (C3) was removed,
set ð4Þ could use too many CPUs.

It remains to prove that the assignment returned by
the revised integer linear program does not need more
than m CPUs. Two cases are to be distinguished: either
every CPU is busy or some CPUs remain idle after
assigning tasks to sets ð1Þ, ð2Þ, and ð3Þ. The proof of the
first case is straightforward while the latter is done in
three steps.

Let us first consider the case where every CPU is busy.
By construction, at most one processor—assigned to
tasks from set ð3Þ—is loaded for time at most � but at
least 3�4 . As all the tasks assigned to set ð4Þ have a process-
ing time larger than �

4, we cannot use more than m CPUs
without contradicting the facts that the integer linear pro-
gram is minimizing the CPU load and that sref exists.

Let us now consider the case where some CPUs
remain idle. We denote their number by m;.

(i)We begin by proving that at most one task in set ð4Þ
does not fit. As m; > 0, every task of set ð4Þ has a work
greater than m;�, otherwise it would have been assigned
to set ð3Þ by the integer linear program. The maximum
amount of work by which a task of set ð4Þ could be over-
reaching is bounded by the gap left between m� and the
work of the tasks filling sets ð1Þ, ð2Þ, and ð3Þ. Because of
the five-set structure on the CPUs, such a gap is at most
3�
4 m; þ �

4 1ð1Þodd, which is strictly smaller than the work of
any task assigned to set ð4Þ. The existence of a task in set
ð4Þ, executed only on processors not meant to do so by
the five-set structure, would contradict the fact that sets

BLEUSE ET AL.: SCHEDULING INDEPENDENT MOLDABLE TASKS ON MULTI-CORES WITH GPUS 2695

ð1Þ, ð2Þ, and ð3Þ were filled by the integer linear program
minimizing the CPU load. Therefore, only a fraction of a
single task can be assigned to set ð4Þ while its execution
requires processors that do not exist.

In the next two steps, we consider an arbitrary assign-
ment for the tasks assigned to set ð4Þ, and we suppose
that exactly one task does not fit. We focus on this partic-
ular task, denoted by TD. Proving its existence contradicts
the fact that the work is minimized by the integer linear
program. We denote by set ð3ÞD the subset of set ð3Þ that
shares processors with task TD.

(ii) We show now that the inequality mð3ÞD > 2m;
holds under the assumption that TD exists. The integer
linear program assigned task TD to set ð4Þ. As set ð4Þ is
the one creating the most work among sets ð1Þ, ð2Þ, ð3Þ,
and ð4Þ, this choice had to be made because constraints
would have been violated otherwise. We know for sure
that mð3ÞD > 0, otherwise this would contradict Step 1.
Moreover, as TD was not assigned to m; processors in
set ð2Þ, its work is greater than 3�

2 m;. Such a case is only
possible if we have enough space next to set ð3Þ, which is
equivalent to the following inequality:

3�

4
mð3ÞD þ 3�

2
m; < ðmð3ÞD þ m;Þ� : (3)

This inequality reduces to the one we are interested in,
i.e., mð3ÞD > 2m;.

(iii) To finish the proof, let us show that the previous
step leads to a contradiction, hence sstruct fits intom CPUs.
Inequality (3) can be rewritten in the following form:

3�

4
mð3ÞD þ �

2
m; þ mð3ÞD

� 	
> � m; þ mð3ÞD

� 	
:

The left part of the sum is a lower bound of the work of
set ð3ÞD. The monotony ensures that the work of TD is
greater than �

2 gðTD;
�
2Þ � 1

 �
, and we know that the num-

ber of processors needed by task TD is at least
mð3ÞD þ m; þ 1. Hence, the work of TD is greater than
�
2 ðm; þ mð3ÞDÞ. This results in a contradiction, as this
would mean that the total work is greater thanm�. tu

Theorem 10. If a solution with makespan at most � exists, then
there exists a solution with the desired seven-set structure with
makespan at most 3�

2 and a lower CPU load.

Proof. The theorem is a direct consequence of Lemmas 8
and 9. tu

5.4 Building the Schedule

We have described the core step of the dual approximation
algorithm with a fixed guess. A binary search is employed
to approach the optimal makespan with successive guesses.
By using an initial lower (resp. upper) bound Bmin (resp.
Bmax) of the optimal makespan, the number of iterations of
this binary search is bounded by log Bmax �Bminð Þ.

Each iteration of the dual approximation algorithm con-
sists in solving an ILP. The complexity of this step is not
bounded by a polynomial function. However, solving the
ILP with a standard linear solver (e.g., CPLEX or Gurobi)
shows a very good efficiency as described in Section 7.4.
Indeed, the filtering functions allow for reducing the search

space size of the ILP, as a task can be assigned to at most
four sets instead of seven (cf. Fig. 3). Moreover, as the num-
ber of tasks increases, every task’s relative processing time
shrinks. Thus, for large instances, most of the tasks will be
assigned to sets ð0Þ and ð6Þ only.

One could also employ dynamic programming to solve
the allocation problem, as it would result in an approxima-
tion algorithm of polynomial-time complexity. However,
the search space is so large that such scheme would be prac-
tically infeasible. By adapting the techniques proposed by
Bleuse et al. [7], such an algorithm would have complexity
of Oðn2m4k2Þ.

6 ALGORITHM APPROX-2

As stated in Section 5.4, the run-time of APPROX-3/2 is not
proved to be polynomial. To get more insight on our dual
approximation algorithm, we devise a simpler, polynomial-
time approximation algorithm APPROX-2, which provides
an approximation ratio of 2þ �. APPROX-2 uses the same
principles as APPROX-3/2: it partitions the computing
resources, allocates the tasks to a partition, and schedules the
taskswithin their partition. Note that APPROX-2 is presented
here under the assumption of having monotonic tasks, but it
does not rely on such an assumption. The algorithm can eas-
ily be adapted for any kind of moldable task model, by con-
sidering for each task the allocation on CPUs that has a
processing time of atmost � andminimizes thework.

6.1 Sketch of APPROX-2

We consider a guess � of the optimal makespan. The sched-
uling problem on the CPUs is simplified by forcing each
task to use its canonical number of CPUs, with respect to �,
i.e., gðj; �Þ. If a task with processing time greater than � on
both architectures exists, the guess � is trivially rejected.
Otherwise, the algorithm works as follows:

1) Allocate the tasks that possess a running time at
most � on only one type of architecture (i.e., these
tasks are larger than � on the other type of
architecture).

2) Sort the remaining tasks by decreasing work ratio
wj;gðj;�Þ

pj
. The approximation ratio derives from this

sorting, as will be explained in Lemma 12.

3) Allocate the sorted tasks on the GPUs until each
GPU has a load of more than �.

4) Schedule the remaining rigid tasks on the CPUs—
which are allotted gðj; �Þ CPUs—with a two-approx-
imation algorithm. List scheduling algorithms or
strip-packing algorithms are viable alternatives for
this step.

If the tasks do not fit within a makespan of at most 2�,
then the algorithm rejects the guess. Otherwise, we have
found a valid schedule.

6.2 Analysis of APPROX-2

We now analyze some properties of APPROX-2. First, we
study its approximation ratio, then its time complexity.

Lemma 11. The makespan of the tasks allocated to the GPUs is
smaller than 2�.

2696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

Proof. By construction, all the tasks considered for an allo-
cation on a GPU are smaller than �. As the algorithm
stops loading a GPU when its load exceeds �, the make-
span bound is straightforward. tu

Lemma 12. If a solution with makespan at most � exists, then
the makespan of the tasks allocated to the CPUs is smaller
than 2�.

Proof. Using the canonical number of CPUs with respect
to � ensures that every task allocated to some CPUs gen-
erates a minimal amount of work (as stated in Section 4).
In particular, this amount of work is at most the amount
of work generated in the optimal schedule. The GPUs
have been—by construction—allocated a greater share of
work than in an optimal solution. Moreover, the tasks are
sorted by decreasing work ratio

wj;gðj;�Þ
pj

. This specific order
implies that the work remaining on the CPUs is smaller
than m� if a solution with makespan at most � exists. The
makespan bound follows from the fact that we schedule
the remaining tasks with a list scheduling [25] or a strip-
packing [26] algorithm. The strip-packing algorithm
would provide a contiguous solution. tu

The previous two lemmas prove that APPROX-2 pro-
vides a solution with makespan at most 2�.

APPROX-2 is an algorithm of low polynomial complex-
ity. It only relies on sorting the tasks, and on keeping track
of the computing resources using priority queues. More-
over, each task is considered at most once when scheduled.
Hence, the complexity of the algorithm is O n log ðnÞþ½ð
log ðkÞ þm log ðmÞ�Þ.

7 SIMULATION RESULTS AND PERFORMANCE

EVALUATION

After providing the theoretical foundation for solving the
given scheduling problem, we now examine the applicabil-
ity of our approach. To this end, we evaluate both the make-
span of the schedules and the run-time to compute the
solutions of APPROX-3/2 and APPROX-2. In our evalua-
tion, we also consider scheduling solutions from other heu-
ristics, for which we used adaptations of the classical
Heterogeneous Earliest Finish Time algorithm (HEFT) [27].

7.1 Problem Instances

Finding the right problem instances for evaluating schedul-
ing algorithms through simulation is generally a hard prob-
lem, and real-world instances are often considered essential
for such an analysis. However, testing an algorithm on only
a small set of real-world instances will most likely not sup-
port the claim with enough empirical evidence that an algo-
rithm is generally well applicable. The StarPU run-time
system supports the dispatching of jobs to either CPUs and
GPUs [28], and it can potentially execute moldable tasks.
However, until now run-time systems like StarPU or Par-
SEC [29] schedule single-processor (sequential) tasks on
available CPUs and GPUs. For that reason, to the best of our
knowledge, no real-world instances for our scheduling
problem exist yet. Another problem is that influencing fac-
tors, such as the number of tasks or the size of tasks, are
most often fixed in real-world instances. As a consequence,

evaluating the impact of different factors is often impossi-
ble. Hence, we decided to generate instances that allow us
to study the general applicability of our algorithms by vary-
ing different factors.

To generate new instances, we first fix the main
parameters of the scheduling problem, which are the
number of tasks (n), the number of CPUs (m), and the
number of GPUs (k). Then, the instance generator
decides on the processing time of all tasks on several
CPUs and one GPU. The intuition behind the generation
process is the following:

1) First, we randomly pick the sequential processing
time of a task on a single CPU.

2) Then, we choose the sequential fraction of this task,
which defines its speedup model. The idea is that
the sequential fraction (between 0 and 1) defines the
lower bound of a task’s run-time, as only the run-
time of the parallel fraction of a task can be reduced
by adding more CPUs (Amdahl’s law [30]).

3) Last, we pick a speedup factor for this task on the
GPU, which defines how much faster (or possibly
slower) a particular task runs on a GPU compared to
being executed on allm CPUs.

We now provide a more detailed description of each step
of the instance generation process.

Step 1. The sequential processing time pj;1 of task Tj is
picked from a uniform distribution in the interval
½pmin; pmax�.

Step 2. Next, the speedup model of each task is deter-
mined. To this end, we apply Amdahl’s law to model
the speedup of moldable tasks. The law states that the
possible speedup of a parallel program is bounded by its
sequential fraction. We select the sequential fraction bj

of each task, where bj follows a uniform distribution in
½bmin;bmax�. The knowledge of the sequential processing
time pj;1 and the sequential fraction bj allows us to com-
pute the parallel processing time on l CPUs of task Tj as:

pj;l ¼ bjpj;1 þ ð1� bjÞ
pj;1
l (for all l in 2; . . . ; m).

Step 3. We assume that GPUs can accelerate the execution
of a task, i.e., a task will—most likely—be faster on a GPU
than when executed on all CPUs of the multi-core system.
Thus, we model the time for task Tj on the GPU relative to
the parallel time on all m CPUs (pj;m). To obtain the time on
the GPU (pj), we draw a speedup factor gj for task Tj and
set pj ¼ gj pj;m, where the value of gj follows a normal distri-
bution with mean gmean and standard deviation gsd. The idea
is that most tasks should be faster on the GPU on aver-
age [1]. But since Lee et al. [1] report that several applica-
tions may also experience a slowdown on a GPU, we allow
tasks to be slower on the GPU than when being executed on
all CPUs. We also limit the maximum speedup or maximum
slowdown of each task on the GPU in order to generate real-
istic processing times, as the normal distribution is
unbounded. We introduce the variables gmin and gmax to
denote the minimum (maximum speedup) and maximum
value of gj (maximum slowdown) of a task when being exe-
cuted on a GPU. That means, if the drawn speedup factor gj
is outside the interval ½gmin; gmax� then we draw another
value from the normal distribution. This process is repeated
until the value of gj lies within the interval.

BLEUSE ET AL.: SCHEDULING INDEPENDENT MOLDABLE TASKS ON MULTI-CORES WITH GPUS 2697

Table 1 shows the set of parameters that were used to
produce the simulation results shown in the present paper.
Ten problem instances were generated for a combination
of parameters n, m, and k using the method described
before. Notice that we did not generate instances for all
possible combinations, as they would often not be useful.
For example, for an instances with n ¼ 10 tasks, we
restricted the number of processors to m ¼ 16 and the
number of GPUs to k ¼ 1. Similarly, the number of CPUs
and GPUs was restricted to m ¼ 64; k ¼ 4 and
m ¼ 512; k ¼ 32, for instances with n ¼ 100 and n ¼ 1; 000
tasks, respectively. The sequential processing time of each
task lies within 1 and 100 units of time. The actual unit of
time is irrelevant in the simulations. What matters is that,
in this case, there are two orders of magnitude between
different processing times. Thus, the sequential processing
times are very heterogeneous, similar to what we find in
batch scheduling systems on current parallel machines [31].
The mean speedup factor gj is based on the speedup
graphs presented by Lee et al. [1]. Despite the fact that
Lee et al. only showed an average speedup of 2 to 3 on the
GPU with their set of benchmarks, we used an average
GPU speedup of 5 (speedup factor of 0.2).

Fig. 4 depicts one of the problem instances, which is
composed of only five tasks for the sake of readability.
Each task has a different scalability behavior (caused by a
different sequential fraction). We can also observe a differ-
ent speedup behavior on the GPU. The processing times of
tasks T3 and T4 increase on the GPU, whereas the other

tasks experience a performance improvement when being
mapped onto the GPU.

We have also experimented with other sets of parame-
ters, including different distributions for the sequential
processing time, e.g., using a beta distribution, such that
processing times become more homogeneous. We also mod-
ified the intervals for the sequential processing time and the
speedup factor. Last, we tested the influence of the sequen-
tial fraction of the tasks. In many other scenarios, the results
were similar to the ones shown in the present paper. How-
ever, we found that heterogeneity in the problem instance
favors our APPROX-3/2 algorithm, i.e., the more heteroge-
neous the instances become the better the schedules of
APPROX-3/2 get in comparison to the other algorithms.

7.2 HEFT-like Heuristics

In the present paper, we have proposed two algorithms that
provide approximate solutions to the scheduling problem
stated in Section 2. In order to compare these approaches
with practically relevant algorithms, we include HEFT-like
algorithms in our evaluation. We call them HEFT-like algo-
rithms as they work similar to the original HEFT algo-
rithm [27], but target a slightly different scheduling
problem. Such algorithms are used in practice, for example,
in the run-time system StarPU, which implements a very
similar algorithm (called MCT for minimum completion
time) to schedule tasks on CPUs and GPUs [28].

Now, we describe the variants and implementations of
the HEFT-like algorithms for scheduling moldable tasks on
system containing multiple CPUs and several GPUs. Our
implementation resembles the original algorithm proposed
by Topcuoglu et al. [27], except that—since precedence con-
straints are absent—we change the priority function used to
sort the tasks. Similar to HEFT, our algorithm places the
highest priority task on either a subset of CPUs or on one of
the GPUs, such that the finish time of a task is minimized.
We call this strategy earliest finish time (EFT). We expected
that HEFT-like algorithms are most likely sensitive to the
type of prioritization function. To avoid a possible bias
towards one prioritization function, we consider three dif-
ferent strategies, which are:

1) LPT: This strategy sorts tasks in decreasing order of
their processing times (Longest Processing Time),

2) SPT: This strategy sorts tasks in increasing order of
their processing times (Shortest ProcessingTime), and

TABLE 1
Parameter Settings Used to Generate Scheduling Instances

description variable values

number of tasks n f10; 50; 100; 1000g
number of CPUs m f4; 16; 64; 256; 512g
number of GPUs k f1; 2; 4; 8; 16; 32g
minimum sequential processing time of tasks pmin 1
maximum sequential processing time of tasks pmax 100
minimum sequential fraction of a task bmin 0
maximum sequential fraction of a task bmax 0.9
mean speedup factor for tasks on GPUs gmean 0.2
standard deviation of speedup factor for tasks on GPUs gsd 0.5
minimum speedup factor for tasks on GPUs gmin 0.1 (10� speedup on the GPU)
maximum speedup factor for tasks on GPUs gmax 1.5 (50% slowdown on the GPU)

Fig. 4. Example instance (n ¼ 5, m ¼ 16, k ¼ 1): Each of the five tasks
exhibits a different parallel scalability on the multi-core machine (left)
and performs differently on the GPU (right).

2698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

3) RATIO: This strategy sorts tasks in decreasing order
of the following ratio: processing time on the CPUs

over the processing time on a GPU, i.e.,
pj;l
pj
, where l is

either 1 for sequential tasks orm for parallel tasks.

For the strategies LPT and SPT, the processing time of

task Tj is computed as minðpj;l; pjÞ, for l 2 f1;mg. By using

the minimum, the partial schedules on the CPUs or GPUs
will be roughly in LPT or SPT order, which would not be

the case when using maxðpj;l; pjÞ. Notice that we have also

performed simulations using the maximum of the two proc-
essing times, but the HEFT-like algorithms computed better
solutions using the minimum.

Now, the remaining question is: How many CPUs should
be assigned to each task when computing the schedule? We
use two simple schemes: the strategy PAR allots all CPUs to a
task (l ¼ m), whereas the strategy SEQ allots only one CPU to
a task (l ¼ 1). Considering the monotonic assumption for the
processing time of moldable tasks (i.e., being non-increasing
in the number of CPUs), the strategy PAR is a greedy way of
minimizing the processing time of a task. The second strategy
(SEQ) favors task parallelism and minimizes the work. It is
certainly possible to improve these HEFT-like heuristics, but
such considerations are outside the scope of this paper. In
total,we have implemented six differentHEFT-like heuristics,
calledHeuristic 1-6, which are listed in Table 2.

7.3 Implementation Details

We implementedAPPROX-3/21 using the programming lan-
guages Julia [32] and Python. Logically, the algorithm
APPROX-3/2 consists of two steps: (i) finding the best � by
applying the bisection method to partition the tasks into sets,
and (ii) building the schedule from the computed partition-
ing. The first step has been implemented in Julia, as it features
the domain-specific modeling language JuMP, which pro-
vides an abstraction layer above different ILP solvers, such as
Gurobi, CPLEX, or GLPK. It allows us to write the ILP using
the JuMP API2 only once, and then we are able to use differ-
ent solvers to compute a solution. The second step, the build-
ing of the schedule, has been implemented in Python.

The algorithm APPROX-2 has been entirely implemented
in Julia and also relies on a bisection search to find the
best �. However, since it maps tasks directly to devices
(CPUs or GPUs), instead of relying on the solution of an
ILP, the actual schedule is built on the fly.

As stated above, the lower and the upper bound of the
scheduling problem get adjusted during the iterative search

for the best � using the bisection method. The bisection
method stops when the ratio between upper and lower
bound is below a certain threshold (the cutoff value). For
both algorithms, APPROX-3/2 and APPROX-2, we have
used a cutoff value of 1.01 (� 1 percent) in all simulations.

The HEFT-like heuristics have been implemented in
Python. Similarly to the implementation of APPROX-2, the
actual schedule is directly built, as no previous partitioning
step is required.

We have used the following software packages for obtain-
ing the simulation results presented in this paper: Julia 0.4.3,
Python 2.7.11, JuMP 0.12.2, Gurobi binding for JuMP 0.2.1,
Gurobi Optimizer for OS X 6.5.1, andMacOS X 10.10.5.

7.4 Simulation Results

Fig. 5 compares the makespans of the schedules that were
computed by APPROX-3/2, APPROX-2, and the six differ-
ent HEFT-like heuristics. For a better comparability, we nor-
malize the makespan for each individual scheduling
instance to the makespan obtained from APPROX-3/2.
Thus, the algorithm APPROX-3/2 will always have a rela-
tive makespan of 1.0 (red horizontal line). The relative
makespan of the other algorithms, APPROX-2 and the six
heuristics, will most likely differ from 1.0. If the computed
relative makespan is smaller than 1.0, the produced sched-
ule is shorter than the one obtained from APPROX-3/2.
Similarly, if the relative makespan is larger than 1.0 then
APPROX-3/2 was able to find a shorter schedule. We can
observe that the HEFT-like heuristics produce competitive
results for smaller instances (cf. Fig. 5a, casem=16 and k=4).
If the number of tasks, CPUs, and GPUs increases, the
results in Fig. 5b provide evidence that APPROX-3/2 pro-
duces significantly shorter schedules than its competitors.
The results of the heuristics 4 to 6 using the PAR strategy
(cf. Table 2) have been omitted for the sake of readability, as
they have been found to be largely inferior compared to the
SEQ versions. Among the HEFT-like algorithms, the heuris-
tics that use an LPT strategy produced the shortest sched-
ules. Interestingly, the solutions obtained from the
approximation algorithm APPROX-2 are most often not bet-
ter than the ones of the much simpler HEFT-like heuristics,
indicating that an approximation factor of 2 is simply too
large for a practical applicability.

The solution quality (the makespan) is only one metric
to assess scheduling algorithms. The algorithm APPROX-
3/2 requires solving an ILP for each value of �. There-
fore, an analysis of the run-time of the algorithms is of
equal importance. The run-time s measured do not
include the time to read and parse the input files and
the time to write the final schedules to disk. In addition,
the results are only meant to show general trends of the
run-time requirements of the different algorithms, as the
algorithms have been implemented using different pro-
gramming languages.

Fig. 6 compares the mean run-time of the different sched-
uling algorithms for various values of n, m, and k. In partic-
ular, the run-time of the algorithms APPROX-3/2 and
APPROX-2 includes all iterations that were required to
obtain the final value of �. The simulations were conducted
on a quad-core Intel i7-3615QM with a clock speed of 2.3
GHz. We recorded the run-time of each algorithm on each

TABLE 2
HEFT-Like Heuristics Used for Comparison

name mapping sorting parallel tasks on CPUs

Heuristic 1 EFT LPT no (SEQ)
Heuristic 2 EFT SPT no (SEQ)
Heuristic 3 EFT RATIO no (SEQ)
Heuristic 4 EFT LPT yes (PAR)
Heuristic 5 EFT SPT yes (PAR)
Heuristic 6 EFT RATIO yes (PAR)

1. Source code available at https://github.com/hunsa/moldableILP
2. Application Programming Interface.

BLEUSE ET AL.: SCHEDULING INDEPENDENT MOLDABLE TASKS ON MULTI-CORES WITH GPUS 2699

instance ten times and computed the median run-time over
the ten trials. Then, we aggregated all instances by unique
values of n, m, and k, i.e., we compute the median run-time
over the 10 runs for one particular instance, and then com-
pute the mean over all instances for a specific tuple of val-
ues ðn;m; kÞ.

Since the run-time s of the various HEFT-like heuristics
were very similar, as only the prioritization function needs
to be changed, we only show the run-time for Heuristic 1
(EFT/LPT/SEQ). As expected, the run-time of Heuristic 1
has been found to be the shortest among the three schedul-
ing algorithms tested. The run-time of the APPROX-2 algo-
rithm is significantly longer than the run-time of the
heuristics due to the iterative nature of the algorithm. It is
also not surprising that the APPROX-3/2 algorithm has the
longest mean run-time in the cases considered. However,
we can observe that the run-time of APPROX-3/2 grows
sub-linearly with problem parameter m, i.e., increasing the
number of cores m by two does not lead to a twice slower
run-time. Therefore, although APPROX-3/2 is an ILP-based
algorithm, it computes solutions relatively quickly; it takes
less than five seconds to compute the schedule for larger
instances in our test set (e.g., n ¼ 1000, m ¼ 512, k ¼ 16, cf.
Fig. 6b). This run-time is certainly too large to schedule rela-
tively short, fine-grained tasks on CPUs or GPUs, but it is a

promising alternative when trying to schedule long-running
tasks (or even different parallel applications).

We have also studied the effectiveness of the filtering
step that we introduced in Section 4.2.2. We recall that the
internal ILP finds a partitioning of all tasks into seven dis-
joint sets. That means, each of the n tasks can only be in one
of the seven partitions. Thus, the ILP initially allocates a
table of n� 7 binary variables. In the filtering step, some
variables are set to 0, i.e., the number of partitions that a
task can be assigned will be reduced. Ideally, the number of
available partitions per task reduces from seven to one
when the filtering is applied, and the solution can be
obtained immediately. Fig. 7 shows the number of available
partitions for increasing values of n. The “mean number of

Fig. 5. Comparison of the relative of makespan obtained with APPROX-2 and the HEFT-like algorithms with respect to the makespan produced by
APPROX-3/2 (n tasks,m CPUs, k GPUs).

Fig. 6. Comparison of the mean run-time (incl. 95 percent confidence interval) of each scheduling algorithm to compute the solutions (n tasks, m
CPUs, k GPUs).

Fig. 7. Distribution of the (mean) number of possible partitions per task
after the filtering has been applied for APPROX-3/2. The graphs show
distributions for all values ofm and k presented in Table 1.

2700 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

possible partitions” is computed over all tasks of one itera-
tion. For example, for one problem instance, the mean num-
ber of possible partitions (over all the tasks) may be 2 in
iteration 1 and 2.5 in iteration 2. In such a case, the distribu-
tions shown in Fig. 7 will contain the values 2 and 2.5. We
observe that, except in the case of n ¼ 10, the ILP only needs
to decide between two partitions for the majority of tasks
(on average). This supports our claim that the filtering step
is very effective and important for obtaining a practically
relevant running time.

Fig. 8 complements the previous results by an analysis of
the number of iterations required until the bisection method
converges. In our simulations, the required number of itera-
tions was ranging from 10 to 17.

In summary, we can state that APPROX-3/2 is able to
find significantly shorter schedules than the APPROX-2
algorithm or the HEFT-like heuristics. On the contrary,
APPROX-3/2 needs more time to compute the solutions.
However, even for larger instances (n ¼ 1;000, m ¼ 512,
k ¼ 16) APPROX-3/2 can be used to obtain schedules in a
couple of seconds. If the average task duration lies in the
range of seconds, applying APPROX-3/2 will definitely
provide an advantage compared to the other scheduling
algorithms. The simulation results also provide evidence
that using moldable tasks can indeed improve performance.
As OpenMP applications are examples of moldable tasks in
practice, a next step could be to evaluate our algorithm in
an experimental setting, e.g., computing and executing a
static schedule on top of StarPU.

8 CONCLUSIONS

In this paper, we presented a new scheduling algorithm
using a generic methodology (the opposite of specific ad-
hoc algorithms) for hybrid architectures (a multi-core
machine with GPUs) with the moldable task model on
CPUs. We proposed an algorithm with a constant approxi-
mation ratio of 3

2 þ �. The main idea of the approach is to
find an adequate partition of tasks on the CPUs and the
GPUs, by using a dual approximation scheme and integer
linear programming. We were not able to show that the run-
ning time of our algorithm is polynomial in the input size.
Nonetheless, we show that our algorithm is efficient
by comparing it to a polynomial-time algorithm with
approximation ratio 2þ �. A simulation analysis on realistic
instances has been provided to assess the computational

efficiency and the schedule quality of the proposed method
when compared to adaptations of the classical HEFT algo-
rithm. The main conclusion is that the ILP-based algorithm
is stable because of its approximation guaranty, and it runs
in a reasonable time. Moreover, the proposed algorithm out-
performs all HEFT-like algorithms when dealing with
instances of larger size, which is often the case on real com-
puting platforms.

ACKNOWLEDGMENTS

This work has been partially supported by a DGA-MRIS
scholarship and the French program GDR-RO.

REFERENCES

[1] V. W. Lee, et al., “Debunking the 100X GPU versus CPU myth: An
evaluation of throughput computing on CPU and GPU,” in Proc.
37th Annu. Int. Symp. Comput. Archit., 2010, pp. 451–460.

[2] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato,
“Power and performance analysis of GPU-accelerated systems,”
in Proc. USENIX Conf. Power-Aware Comput. Syst., 2012, vol. 12,
pp. 10–10.

[3] E. Agullo, et al., “QR factorization on a multicore node enhanced
with multiple GPU accelerators,” in Proc. 25th IEEE Int. Parallel
Distrib. Process. Symp., 2011, pp. 932–943.

[4] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix
computations on heterogeneous multi-core and multi-GPU sys-
tems,” in Proc. 26th ACM Int. Conf. Supercomputing, 2012, pp. 365–
376.

[5] A. Boukerche, J. M. Correa, A. Melo, and R. P. Jacobi, “A hard-
ware accelerator for the fast retrieval of DIALIGN biological
sequence alignments in linear space,” IEEE Trans. Comput.,
vol. 59, no. 6, pp. 808–821, Jun. 2010.

[6] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-
driven parallel application to GPU-accelerated clusters,” in Proc.
Supercomputing Conf., 2008, pp. 8:1–8:9.

[7] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mouni�e, and D. Try-
stram, “Scheduling independent tasks on multi-cores with GPU
accelerators,” Concurrency Comput.: Practice Experience, vol. 27,
no. 6, pp. 1625–1638, 2015.

[8] F. Monna, “Scheduling for new computing platforms with GPUs,”
Dept. LIP 6, Universit�e Pierre et Marie Curie-Paris VI, Nov. 2014.

[9] R. P. Brent, “The parallel evaluation of general arithmetic
expressions,” J. ACM, vol. 21, no. 2, pp. 201–206, 1974.

[10] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” Math. Pro-
gram., vol. 46, no. 1, pp. 259–271, 1990.

[11] D. B. Shmoys and E. Tardos, “An approximation algorithm for the
generalized assignment problem,” Math. Program., vol. 62, no. 1,
pp. 461–474, 1993.

[12] E. V. Shchepin and N. Vakhania, “An optimal rounding gives a
better approximation for scheduling unrelated machines,” Opera-
tions Res. Lett., vol. 33, no. 2, pp. 127–133, 2004.

[13] V. Bonifaci and A. Wiese, “Scheduling unrelated machines of few
different types,” CoRR, vol. abs/1205.0974, 2012, http://arxiv.
org/abs/1205.0974

[14] �E. Blayo, L. Debreu, G. Mouni�e, and D. Trystram, “Dynamic load
balancing for ocean circulation model with adaptive meshing” in
Proc. 5th Int. Euro-Par Conf. Parallel Process., 1999, pp. 303–312.

[15] L. Eyraud, “Th�eorie et pratique de l’ordonnancement d’applications
sur les syst�emes distribu�es,” Dept. ID-IMAG, Institut National Poly-
technique deGrenoble, 2006.

[16] K. Jansen and L. Porkolab, “Linear-time approximation schemes
for scheduling malleable parallel tasks,” Algorithmica, vol. 32,
no. 3, pp. 507–520, 2002.

[17] J. Turek, J. Wolf, and P. Yu, “Approximate algorithms scheduling
parallelizable tasks,” in Proc. 4th Annu. ACM Symp. Parallel Algo-
rithms Archit., 1992, pp. 323–332.

[18] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan,
“Performance bounds for level-oriented two-dimensional packing
algorithms,” SIAM J. Comput., vol. 9, no. 4, pp. 808–826, 1980.

[19] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram, “A
fast 5/2-approximation algorithm for hierarchical scheduling,” in
Proc. 16th Int. Euro-Par Conf. Parallel Process., 2010, pp. 157–167.

Fig. 8. Distribution of iterations (of the bisection method) performed by
APPROX-3/2 to converge to a solution.

BLEUSE ET AL.: SCHEDULING INDEPENDENT MOLDABLE TASKS ON MULTI-CORES WITH GPUS 2701

[20] W. Ludwig and P. Tiwari, “Scheduling malleable and nonmallea-
ble parallel tasks,” in Proc. 5th Annu. ACM-SIAM Symp. Discrete
Algorithms, 1994, pp. 1670–176.

[21] G. Mouni�e, C. Rapine, and D. Trystram, “A 3/2-approximation
algorithm for scheduling independent monotonic malleable
tasks,” SIAM J. Comput., vol. 37, no. 2, pp. 401–412, 2007.

[22] L. Fan, F. Zhang, G. Wang, and Z. Liu, “An effective approxima-
tion algorithm for the malleable parallel task scheduling prob-
lem,” J. Parallel Distrib. Comput., vol. 72, no. 5, pp. 693–704, 2012.

[23] S. Hunold, “One step toward bridging the gap between theory
and practice in moldable task scheduling with precedence con-
straints,” Concurrency Comput.: Practice Experience, vol. 27, no. 4,
pp. 1010–1026, 2015.

[24] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation
algorithms for scheduling problems: Theoretical and practical
results,” J. ACM, vol. 34, no. 1, pp. 144–162, 1987.

[25] M. R. Garey and R. L. Grahams, “Bounds for multiprocessor
scheduling with resource constraints,” SIAM J. Comput., vol. 4,
no. 2, pp. 187–200, 1975.

[26] A. Steinberg, “A strip-packing algorithm with absolute perfor-
mance bound 2,” SIAM J. Comput., vol. 26, no. 2, pp. 401–409, 1997.

[27] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,
pp. 260–274, Mar. 2002.

[28] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency Comput.: Practice Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[29] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. H�erault, and
J. J. Dongarra, “PaRSEC: Exploiting heterogeneity to enhance
scalability,” Comput. Sci. Eng., vol. 15, no. 6, pp. 36–45, 2013.

[30] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proc. AFIPS
Spring Joint Comput. Conf., 1967, pp. 483–485.

[31] E. Shmueli and D. G. Feitelson, “On simulation and design of
parallel-systems schedulers: Are we doing the right thing?” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 7, pp. 983–996, Jul. 2009.

[32] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” CoRR, 2014. [Online].
Available: http://arxiv.org/abs/1411.1607

Rapha€el Bleuse received the MSc degree in
computer science from Grenoble INP, Grenoble,
France. He is working toward the PhD degree in
computer science at the University Grenoble
Alpes, Grenoble, France.

Sascha Hunold received the MSc degree in
computer science from the University of Halle-
Wittenberg, Halle, Germany and the PhD degree
in computer science from the University of Bayr-
euth, Bayreuth, Germany. He is an assistant pro-
fessor with TUWien, Vienna, Austria.

Safia Kedad-Sidhoum received the PhD degree
in operations research from Ecole Centrale
Paris, in January 1997 and the HdR degree from
Pierre et Marie Curie University, in November
2010. She is a member of the LIP6 (Laboratoire
d’Informatique de Paris 6) as an assistant pro-
fessor in the team «Operations Research» of
Pierre et Marie Curie University. She spent two
years (97-99) in Dynasys as a project manager
in supply chain planning. She received a CNRS-
Google Focused Research Award in 2011. She

is a member of the steering committee of the International Workshop
on Lot-Sizing (IWLS) since 2010 (every year). She is a member of the
organizing committee of the challenge ROADEF/EURO since 2012.
She participated to several research projects including ANR (LMCO),
FUI (RCSM, DematFactory) and PEPS (COOL) projects. Her research
interests include combinatorial optimization, supply chain, scheduling
theory, planning, and lot-sizing.

Florence Monna received the MSc degree in
applied mathematics (optimization) from ENSTA
ParisTech, Paris, France and the PhD degree in
computer science from the UPMC, Sorbonnes
University, Paris, France. She now works as an
engineer in the Research and Development
Department, Solent SAS, Nanterre, France.

Gr�egory Mouni�e received the PhD degree from
the Grenoble Institute of Technology, France, in
2000. He is an associate professor in the Depart-
ment Grenoble-INP/Ensimag, University. Greno-
ble, Alpes, France, since 2001. He lectures on
operating systems, concurrent programming and
distributed programming. His research focuses on
scheduling for high performance computing, par-
allel computing, and communication optimization.

Denis Trystram is a professor in the Grenoble
Institute of Technology, since 1991 and is now
distinguished professor in this Institute. He was
nominated as a senior member of the Institut
Universitaire de France, in 2010. His current
research activities concern the design and analy-
sis of efficient approximation algorithms for multi-
objective scheduling problems applied to parallel
and distributed processing (from many-cores
with accelerators to exascale systems). He is
interested in problems concerning reliability and

energy optimization and started collaborations with the French com-
pany BULL to accompany them to the exascale. He is also involved in
the editorial board of the Parallel Computing, the Journal of Parallel
and Distributed Computing, and the IEEE Transactions on Parallel and
Distributed Systems. He served on the program committees of major
international conferences in the field. He has published several books,
more than 90 papers in international journals and 150 contributions in
international conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2702 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

